Low density of sodium channels supports action potential conduction in axons of neonatal rat optic nerve.

نویسندگان

  • S G Waxman
  • J A Black
  • J D Kocsis
  • J M Ritchie
چکیده

The density of sodium channels in premyelinated axons was estimated from measurements of the binding of [3H]saxitoxin to neonatal rat optic nerve. The maximum saturable binding capacity of the nerve was 16.2 +/- 1.2 fmol/mg of wet weight, with an equilibrium dissociation constant of 0.88 +/- 0.18 nM (mean +/- SEM). These values correspond to a high-affinity saxitoxin-binding site density of approximately 2/microns 2 within premyelinated axon membrane. Action potential propagation in neonatal rat optic nerve is completely blocked by 5 nM saxitoxin, indicating that action potential electrogenesis is mediated by channels that correspond to high-affinity saxitoxin-binding sites. These results demonstrate that action potential conduction is supported by a low density of sodium channels in this system. Since the internodal axon membrane of myelinated fibers may contain a low density of sodium channels, it is possible that restoration of conduction in some demyelinated fibers may not require additional sodium channel incorporation into the demyelinated axon membrane.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

N-type calcium channels and their regulation by GABAB receptors in axons of neonatal rat optic nerve.

Axons of neonatal rat optic nerves exhibit fast calcium transients in response to brief action potential stimulation. In response to one to four closely spaced action potentials, evoked calcium transients showed a fast-rising phase followed by a decay with a time constant of approximately 2-3 sec. By selective staining of axons or glial cells with calcium dyes, it was shown that the evoked calc...

متن کامل

Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination.

Myelinated fibres are characterized by the aggregation of Nav1.6 sodium channels within the axon membrane at nodes of Ranvier, where their presence supports saltatory conduction. In this study, we used immunocytochemical methods to study the organization of sodium channels along axons in experimental allergic encephalomyelitis (EAE), a model of multiple sclerosis. We studied axons within the op...

متن کامل

Nicotinic acetylcholine receptors in mouse and rat optic nerves.

Receptor-mediated calcium signaling in axons of mouse and rat optic nerves was examined by selectively staining the axonal population with a calcium indicator. Nicotine (1-50 microM) induced an axonal calcium elevation that was eliminated when calcium was removed from the bath, suggesting that nicotine induces calcium influx into axons. The nicotine response was blocked by d-tubocurarine and me...

متن کامل

The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head.

AIM To study the normal distributions of mitochondria and voltage gated Na+ channels in the human optic nerve head in order to gain insight into the potential mechanisms of optic nerve dysfunction seen in the inherited optic neuropathies. METHODS Five fresh frozen human optic nerves were studied. Longitudinally orientated, serial cryosections of optic nerve head were cut for mitochondrial enz...

متن کامل

Neuroprotection by sodium channel blockade with phenytoin in an experimental model of glaucoma.

PURPOSE Sustained influx of intracellular sodium through voltage-gated sodium channels is an important event in the cascade leading to degeneration of axons. This study tested the hypothesis that sodium channel blockade with phenytoin would result in neuroprotection of retinal ganglion cells (RGCs) and optic nerve axons in an experimental model of glaucoma. METHODS Chronic elevation of rat in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 86 4  شماره 

صفحات  -

تاریخ انتشار 1989